Sunday, 12 May 2013

Ancestor Matrix Problem.


There is a binary tree of size N. All nodes are numbered between 1-N(inclusive). There is a N*N integer matrix Arr[N][N], all elements are initialized to zero. So for all the nodes A and B, put Arr[A][B] = 1 if A is an ancestor of B (NOT just the immediate ancestor).


    /*  
          * IDEA is to use post-order traversal of a binary tree because in post-order we have child nodes first and then parent node which makes our task easy.
          * Algorithm of post order traversal is modified to return a string to calling function. 
          * This string contains all the child nodes of a tree separated by a space.
          * Process current node and add it to str then return str.
          * Pass str to setArray function and also current node.
          * Current node will be parent node and str will contain all child nodes of parent node separated by space.
          * Set arr[parentNode][childNode] = 1.
          * Scan str from left to right and add character to string ch, if space is encountered convert ch to integer and set arr[parent][ch] = 1.
          * Now set ch = “” and repeat.Press any key to continue . . .
    */

int **arr;

void setArray(string child, int parent)
{
     string ch ="";
     for(int i=0; i<child.length()-1; i++)
     {
             if(child[i] == ' ')
             {
                         if(ch != "")
                         {
                               arr[parent][toInt(ch)] = 1;
                         }
                         ch = "";
             }
             else
                         ch += child[i];
     }
}

string fillArray(node *ptr)
{
       string str ="";
       if(ptr)
       {
              str += " " + fillArray(ptr->getLeftChild());
              str += " " + fillArray(ptr->getRightChild());
              str += " " + toString(ptr->getData());
              setArray(str,ptr->getData());
       }
       else
           str = "";
       return str;
}

//Create and initializes 2-D array to all zeros.
void initializeArray(int n)
{
     arr = new int*[n+1];
     for(int i=0; i<=n; i++)
     {
             arr[i] = new int[n+1];
             for(int j=0; j<=n ; j++)
                     arr[i][j] = 0;
     }
}

//Diplay the 2-D array.
void displayArray(int n)
{
     for(int i=0; i<=n; i++)
     {
             cout<<"\n\nrow "<<i<<"\t";
             for(int j=1; j<=n ; j++)
             {
                     if( i ==0 )
                         cout<<" c"<<j;
                     else
                         cout<<"  "<<arr[i][j];
             }
     }
}

//Convert a string to integer and return int.
int toInt(string s)
{
    int num;
    istringstream st(s);
    st >> num;
    return num;
}



//Convert integer to string and return string.
string toString(int Number)
{
        string Result;          
        // stream used for the conversion
       ostringstream convert; 
       // insert the textual representation of 'Number' in the characters in the stream       
       convert << Number;     
        // set 'Result' to the contents of the stream
       Result = convert.str();
       return Result;
}

ORIGINAL TREE
                 6
               /   \
              2     8
             / \   / \
            1   4 7   9
               / \     \
              3   5     10


CHILD NODES OF A NODE  
1       ChildNodes :    1
3       ChildNodes :    3
5       ChildNodes :    5
4       ChildNodes :     3    5 4
2       ChildNodes :     1     3    5 4 2
7       ChildNodes :    7
10      ChildNodes :    10
9       ChildNodes :      10 9
8       ChildNodes :     7      10 9 8
6       ChildNodes :      1     3    5 4 2     7      10 9 8 6


Ancestor Matrix

row 0    c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

row 1     0  0  0  0  0  0  0  0  0  0

row 2     1  0  1  1  1  0  0  0  0  0

row 3     0  0  0  0  0  0  0  0  0  0

row 4     0  0  1  0  1  0  0  0  0  0

row 5     0  0  0  0  0  0  0  0  0  0

row 6     1  1  1  1  1  0  1  1  1  1

row 7     0  0  0  0  0  0  0  0  0  0

row 8     0  0  0  0  0  0  1  0  1  1

row 9     0  0  0  0  0  0  0  0  0  1

row 10    0  0  0  0  0  0  0  0  0  0


1 comment:

  1. Hi, the original blogpost is updated with code. Please visit it again..

    http://www.ritambhara.in/build-binary-tree-from-ancestor-matrics/

    ReplyDelete